首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341784篇
  免费   36354篇
  国内免费   14858篇
电工技术   61708篇
技术理论   33篇
综合类   32357篇
化学工业   36882篇
金属工艺   15990篇
机械仪表   17151篇
建筑科学   37478篇
矿业工程   14994篇
能源动力   21389篇
轻工业   18780篇
水利工程   13213篇
石油天然气   14349篇
武器工业   4030篇
无线电   26561篇
一般工业技术   23664篇
冶金工业   15429篇
原子能技术   4523篇
自动化技术   34465篇
  2024年   698篇
  2023年   4317篇
  2022年   8140篇
  2021年   10794篇
  2020年   10991篇
  2019年   8513篇
  2018年   7906篇
  2017年   10262篇
  2016年   12297篇
  2015年   13443篇
  2014年   23824篇
  2013年   20753篇
  2012年   25730篇
  2011年   28147篇
  2010年   20696篇
  2009年   21079篇
  2008年   19164篇
  2007年   23498篇
  2006年   21269篇
  2005年   18143篇
  2004年   15154篇
  2003年   13071篇
  2002年   10768篇
  2001年   8884篇
  2000年   7327篇
  1999年   5680篇
  1998年   4003篇
  1997年   3434篇
  1996年   2977篇
  1995年   2497篇
  1994年   2112篇
  1993年   1502篇
  1992年   1250篇
  1991年   839篇
  1990年   725篇
  1989年   684篇
  1988年   400篇
  1987年   311篇
  1986年   245篇
  1985年   260篇
  1984年   254篇
  1983年   210篇
  1982年   160篇
  1981年   107篇
  1980年   102篇
  1979年   54篇
  1978年   34篇
  1977年   32篇
  1959年   57篇
  1951年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
12.
Aqueous solutions of poly(vinylpyrrolidone) (PVP) of various concentrations (20, 25, and 28 wt%) were successfully spun into fibers by centrifugal spinning. The pristine PVP fibers were annealed and carbonized to produce flexible carbon fibers for use as binder-free anodes in lithium-ion batteries. These flexible carbon fibers were prepared by developing a novel three-step heat treatment to reduce the residual stresses in the pristine PVP precursor fibers, and to prevent fiber degradation during carbonization. The thermogravimetric analysis data showed that the annealed fibers yielded a residual mass percentage of 36.0% while the pristine PVP fibers suffered a higher mass loss and only retained 26.5% of original mass above 450 °C (under nitrogen). The electrochemical performance of the carbon-fiber anodes was evaluated by conducting galvanostatic charge/discharge, rate performance, and cycle voltammetry experiments. The 20, 25, and 28 wt% derived binder-free anodes delivered specific charge capacities of 205, 189, and 275 mAh g−1, respectively, after the first cycle at a current density of 100 mA g−1. The results obtained in this work indicate that a feasible pathway towards a large-scale production of carbon-fiber anodes from a 100% aqueous solution can be achieved via centrifugal spinning and subsequent heat treatment.  相似文献   
13.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
14.
文章介绍了海外某大型火力发电厂发生的一起发电机定子接地故障的分析和处理过程,对发电厂类似故障的处理和海外发电厂的运行和维护提供了参考。  相似文献   
15.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
16.
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.  相似文献   
17.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
18.
Flexible and hydrophobic biobased films were obtained using zein esterified with methanol and para-toluene (p-toluene) sulfonic acid, cutin from tomato peels and ethanol. Esterification was confirmed by proton nuclear magnetic resonance and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). Non-modified zein films were brittle and hydrophilic. ATR-FTIR demonstrated that zein esterification increased zein hydrophobicity. Without cutin, esterified zein films were hydrophobic but brittle. Addition of cutin yielded films that were flexible and hydrophobic, as demonstrated by contact angle measurements. Principal component analysis (PCA) of ATR-FTIR data showed that intensities at 3195 cm−1 and 3490 cm−1 were correlated to the relative hydrophobicity of zein films. PCA also showed that films of esterified zein and cutin were more hydrophobic than their counterparts (non-modified zein without cutin). Optical and scanning electron microscopy demonstrated that esterified zein was compatible with cutin and yielded cohesive films, which did not fracture upon bending.  相似文献   
19.
Palm fatty acid distillate (PFAD) is a rich source of vitamin E. As compared to other vegetable oil, PFAD has higher tocotrienol (70–80%) over tocopherol content, which makes it a valuable source for vitamin E extraction. Current vitamin E extraction methods are not sustainable due to the intensive usage of chemical and high operational cost. Hence, the present study investigated for the first time using dry fractionation process as a green and economical pretreatment method for separating solid fraction (stearin) and liquid fraction (olein) in order to concentrate vitamin E from PFAD in olein fraction. We examined the dry fractionation conditions: crystallization ending temperature (36–44 °C), cooling rate (0.3 and 1.5°C min−1), stirring speed (20–125 rpm), and holding time (0–60 min) on the composition of unsaturated and saturated fatty acids as well as vitamin E content in liquid fraction (olein) and solid fraction (stearin) using gas chromatography and high performance liquid chromatography, respectively. In most of these conditions, vitamin E was ultimately higher in olein fraction as compared to stearin fraction, which is correlated with the high degree of unsaturation. Under a cooling rate of 0.3°C min−1, 90 rpm stirring speed, and ending crystallization of 38 °C, the highest vitamin E rich olein fraction was attained with 1479 ± 10.51 ppm in 50 g olein fraction as compared to 1366 ± 7.94 ppm in 500 g of unfractionated PFAD.  相似文献   
20.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号